Solvent-Free Lipase-Catalyzed Synthesis of Technical-Grade Sugar Esters and Evaluation of Their Physicochemical and Bioactive Properties
نویسندگان
چکیده
Technical-grade oleic acid esters of sucrose and fructose were prepared using solvent-free biocatalysis at 65 ̋C, without any downstream purification applied, and their physicochemical and bioactivity-related properties were evaluated and compared to a commercially available sucrose laurate emulsifier. To increase the conversion of sucrose and fructose oleate, prepared previously using solvent-free lipase-catalyzed esterification catalyzed by Rhizomucor miehei lipase (81% and 83% ester, respectively), the enzymatic reaction conditions was continued using CaSO4 to control the reactor’s air headspace and a lipase (from Candida antarctica B) with a hydrophobic immobilization matrix to provide an ultralow water activity, and high-pressure homogenation, to form metastable suspensions of 2.0–3.3 micron sized saccharide particles in liquid-phase reaction media. These measures led to increased ester content of 89% and 96% for reactions involving sucrose and fructose, respectively. The monoester content among the esters decreased from 90% to <70% due to differences in regioselectivity between the lipases. The resultant technical-grade sucrose and fructose lowered the surface tension to <30 mN/m, and possessed excellent emulsification capability and stability over 36 h using hexadecane and dodecane as oils, comparable to that of sucrose laurate and Tween® 80). The technical-grade sugar esters, particularly fructose oleate, more effectively inhibited gram-positive foodborne pathogens (Lactobacillus plantarum, Pediococcus pentosaceus and Bacillus subtilis). Furthermore, all three sugar esters displayed antitumor activity, particularly the two sucrose esters. This study demonstrates the importance of controlling the biocatalysts’ water activity to achieve high conversion, the impact of a lipase’s regioselectivity in dictating product distribution, and the use of solvent-free biocatalysis to important biobased surfactants useful in foods, cosmetics, personal care products, and medicine.
منابع مشابه
Lipase mediated synthesis of sugar fatty acid esters
This review is concerned with lipase catalyzed synthesis of sugar fatty acid esters in water immiscible organic solvents. Sugar esters are widely used nonionic and nontoxic biosurfactants. Certain sugar esters inhibit microbial growth and have other activities. Lipase mediated synthesis has important advantages over conventional chemical synthesis of sugar esters. Lipase catalyzed synthesis is ...
متن کاملOxalic acid dihydrate catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives under thermal and solvent-free conditions
Oxalic acid dihydrate as a green, mild and efficient catalyst for the one-pot three-component Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives from the reaction between β-keto esters (methyl or ethyl acetoacetate), aromatic aldehyde (benzaldehye derivatives) and urea or thiourea under thermal and solvent-free conditions with excellent yields and short reaction time is st...
متن کاملOxalic acid dihydrate catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives under thermal and solvent-free conditions
Oxalic acid dihydrate as a green, mild and efficient catalyst for the one-pot three-component Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives from the reaction between β-keto esters (methyl or ethyl acetoacetate), aromatic aldehyde (benzaldehye derivatives) and urea or thiourea under thermal and solvent-free conditions with excellent yields and short reaction time is st...
متن کاملDicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers
Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters.
متن کاملSynthesis of electron-poor N-Vinylimidazole derivatives catalyzed by Silica nanoparticles under solvent-free conditions
Protonation of the highly reactive 1:1 intermediates, produced in the reaction between triphenylphosphine and acetylenic esters, by NH-acids such as azathioprine, imidazole or theophylline leads to the formation of vinyltriphenylphosphonium salts, which undergo a Michael addition reaction with a conjugate base to produce phosphorus ylides. Silica nanoparticles (silica NPs were prepared by therm...
متن کامل